LOADING

加载过慢请开启缓存 浏览器默认开启

Randomized Algorithms

2024/12/27 ADS

文章目录

👇

Randomized Algorithms

Definition

Algorithms make random decisions as the algorithm processes the worst-case input.

Examples

Hiring Problem(Secretary Problem)

There are n candidates and we need to hire the best candidates.We can only decide whether to hire a candidate or not before we meet the next candidate.

Problem1

Our goal is to minimize the total number of hired candidates.

Solution1
randomly permute all the candidates
for each candidate:
    if candidate is better than the current best candidate:
        hire the candidate
Expectation Analysis

$$x_i=\begin{cases}1,\quad i\ is\ hired\\0,\quad otherwise\end{cases}$$$$X=\sum_{i=1}^n x_i$$$$E(X)=\sum_{i=1}^n E(x_i)=\sum_{i=1}^n Pr(x_i=1)=\sum_{i=1}^n\frac{1}{i}\in[ln(n+1),ln(n)+1]$$

Online-Hiring Problem

Our goal is to hire only once and maximize the probality that the best candidate is hired.

Solution2
randomly permute all the candidates
for i = k+1 to n:
    if candidate i is better than the first k candidates:
        hire candidate i
        break
Expectation Analysis

We define $Pr[S]$ as the probability that the best candidate is hired,$Pr[A_i]$ as the probability that the best candidate is at position $i$ and $Pr[B_i]$ as the probability that the candidate $i$ is hired.

$$Pr[S]=\sum_{i=k}^n Pr[A_i\cap B_i]=\sum_{i=k}^n Pr[A_i]Pr[B_i|A_i]=\frac{1}{n}\sum_{i=k}^n Pr[B_i|A_i]=\frac{1}{n}\sum_{i=k}^n\frac{k}{i-1}$$$$\geq \frac{k}{n}ln(\frac{n}{k})$$
When $k=\frac{n}{e}$, $Pr[S]_{min}=\frac{1}{e}$.

How to Randome Permute?
Idea1

Give each candidate a unique, random ID, and permute based on the ID.
For a candidate $i$,its ID $k_i=random(1,n^3)$.$$Pr[k_i=k_j\ for\ som\ i,j]\leq\sum_{i\neq j}Pr[k_i=k_j]\leq \sum_{i\neq j}\frac{1}{n^3}\leq\frac{1}{n} $$

Idea2

Random shaffle:

for i=n to 1:
    j=random(i)
    swap a_i and a_j

Quick Sort:

Quicksort(A):
if |A| < = 3:
    trivial sort
else:
    choose a pivot p from A
    A_1={a in A; a < p}
    A_2={a in A; a > p}
    Quicksort(A_1)
    Quicksort(A_2)
    A=A_1 + A_2
    return A

A pivot is good if $\frac{1}{4}|A|\leq |A_1|,|A_2|\leq \frac{3}{4}|A|$.
If we choose a pivot in the head ,tail or middle, we can not ensure the pivot is good.

How to pick a good pivot?

Pick another if not good.This takes $O(n\log n)$ steps in expectation.

Theorem

As we know about the QuickSort algorithm, the total running time equals to the times of total comparisons.

Set $A=a_1<a_2<…<a_n$.
for $a_i,a_j\in A$,
$$x_{ij}=\begin{cases}1\quad if\ a_i\ and\ a_j\ is\ compared\\0\quad otherwise\end{cases}$$
$$E(X)=\sum_{i}\sum_{j>i}E(x_{ij})=\sum_{i}\sum_{j>i}Pr[a_i\ and\ q_i\ are\ compared]$$$$=\sum_{i}\sum_{j>i}\frac{2}{j-i+1}=O(n\log n)$$

MAX-3SAT Problem

Description

e.g. Given $F:(x_1\cap x_2\cap x_3)\cup (x_2\cap \bar{x_3}\cap \bar{x_5})\cup (x_1\cap x_4)$,determine if there exists a set of ${x}$, F=1.

Solution

We set $x_i=1$ for probability $\frac{1}{2}$.And we define $k$ as the number of clauses in $F$ and $Y$ as the number of clauses satisfied.
$$E[Y]=\frac{7}{8}k\quad k’=\lfloor\frac{7}{8}k\rfloor$$$$\frac{7}{8}k=E[Y]=\sum_{i=0}^{k}iPr[Y=i]\leq k’\sum_{i=0}^{k’}Pr[Y=i]+\sum_{i=k’+1}^{k}Pr[Y=i]$$$$\leq k’Pr[Y\leq K’]+kPr[Y\geq k’]\leq k’+kPr[Y\geq \frac{7}{8}k]$$$$Pr[Y\geq \frac{7}{8}k]\geq\frac{1}{8k}$$